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ABSTRACT

It is shown that a random process is spherically invariant if and only if it
is equivalent to a zero mean Gaussian process multiplied by an independent
random variable. Several properties of spherically invariant random processes
follow in a simple and direct fashion from this representation.

INTRODUCTION

Spherically invariant random processes (SIRP's) were introduced by Vershik
[1] when he was investigating a class of random processes which shared some
properties characteristic of Gaussian processes. In particular, he found that,
for second order SIRP's, all mean square estimation problems have linear
solutions, and this class of processes is closed under linear operations. In
an interesting paper, Blake and Thomas [2] explored some important properties
of SIRP's. Then, in a recent paper [3] Yao presented some very significant
results concerning SIRP's. In particular, he presented a representation
theorem for the family of finite dimensional distributions of SIRP's. The ref-
erences in [3] provide a summary of other work done in this area.

By the well-known theorem of Kolmogorov [4; 5, pp.32-37], the consistent
and symmetric family of all finite dimensional distributions of a random
process is necessary and sufficient to give a statistical characterization of
the process (i.e. to uniquely define the probability distribution in the sample
function space for all Borel sets of the sample function .,pace). In practice,
few processes are characterized in this way; the major difficulty being the

. , mathematical intractability of general n dimensional distributions. However,
a SIRP can be conveniently characterized in terms of its family of finite

A dimensional distributions (see [2) and [3)). In this paper we will develop a
representation theorem for SIRP's by using the family of finite dimensional
distributions of a SIRP. It will be shown that, loosely speaking, at the heart
of any SIRP is a Gaussian process. This will enable us to extend many results
known for Gaussian processes to SIRP's.

DEVELOPMENT

We will say that a random process is singular if one random variable in
the process can be written as a finite linear combination of the other random
variables in the process. It will be seen later in this paper that (except for
the identically zero process) the case considered by Yao is the nonsingular
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case. Thus the class considered by Yao does not include all Gaussian
processes. Vershik, on the other hand, as well as Blake and Thomas, con-
sidered only second order SIRP's. We will impose neither the second order
property nor the nonsingularity property.

For our purposes, a centered SIRP will be defined as a random process
whose n-th order characteristic function is a function of an n-th order non
negative definite quadratic form. If the mean exists, then the centering is
easily seen to be equivalent to having a zero mean (i.e. use differentiation
of the characteristic function). In the sequel it will be assumed that all
SIRP's are centered. In Yao's work, the SIRP's were taken to be those whose

n-th order characteristic function was a function of an n-th order positive
definite quadratic form.

Let C, denote the collection of all classes of consistent finite order
characteristic functions of SIRP's whose n-th order characteristic function
is a function of an n-th order positive definite quadratic form. Obviously,
not just any function of the quadratic form will work. Let un represent an
n dimensional row vector. Let Rn denote an nxn positive definite matrix,

Let a prime denote the transpose. The following theorem is due to Yao [3].

Theorem 1: A necessary and sufficient condition for the class of characteristic
functions

n(cU) = n(u R nU'), n > 1]
n n n nn n

to be inC is that
co.

2A*n(r) (r) exp(--rv2 )dF(v)

where F(-) is a probability distribution function supported on the non negative
half line.

This theorem can be extended to include the singular case in the following
straightforward manner. Consider a singular SIRP. Select N random variables
from this process. Denote them by the row vector XN . Assume that this set

of random variables is singular. Let X denote the row vector of dimension r
r

such that each random variable in X is also in XN, X is nonsingular, and
r N

XN= XA ,where A is an rxN transformation matrix. Then from Theorem 1, we

know that the characteristic function of X , denoted by .

C(U) = E[exp(i u X') , .

is given by rr ...................................
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co 2
j (u exp( u R r) dF(v)

0

where R is some positive definite rxr matrix and F(.) is some probability dis-
r

tribution function supported on the non negative half line. The characteristic
function of XN is given by

V!

NN

CN(UN)=EepiuX)

Cr(uN A')

exp(- -1- uN A RAu dF(v)
0

Thus we see that the characteristic function of XN is a function of a non

negative definite quadratic form.

Conversely, consider the class of characteristic functions=0xp- v2 -- :

n (u) ,exp(- 2 Rnun)dF(v) n > In n 0 n n n '

where Rn is an nxn non negative definite matrix. It is readily seen that this

is the class of characteristic functions of a random process which can be
represented as a Gaussian random process, with zero mean and covariance

matrix R , multiplied by a random variable whose probability distribution

function is given by F(.). Thus it follows from Kolmogorov's theorem that
this class of characteristic functions is consistent. Also, from the definition
of SIRP's, it follows that the corresponding random process is spherically
invariant.

Let C, denote the collection of all classes of consistent finite order char-
acteristic functions of SIRP's. Then we have the following extension of

Theorem I. -;

Theorem 2: Theorem I is true If C, is replaced by C, and Rn is replaced by Rn.

It follows from Theorem 2 and Kolmogorov's theorem that a random process
is a SIRP If and only If it is of the form AY(t), where A is a random variable
whose distribution function is supported on the non negative half line and
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Y(t) is a zero mean Gaussian process independent of A. Consider, for the
moment, the case where the distribution function of A is not necessarily
supported on the non negative half line. The n-th order characteristic
function of any n random variables in the process is of the form

CO2
Cn(u) = exp(- -- uu n 'dF M

where R is the covariance matrix of the n mutually Gaussian random variables

Y(t), ... , It is readily seen that this integral can be expressed as

Cn(un ) = exp(- -- u Rn )IO(v),0 n

where F(,) is a distribution function supported on the non negative half line.
That is, if F is the distribution function of A, then F is the distribution function
of JA 1. In other words, the random processes AY(t) and IA IY(t) have the same
family of finite dimensional distributions. We summarize these results in the

*following representation theorem for SIRP's.

*Theorem 3: A random process is a spherically invariant random process if and
only if it is equivalent to a random process of the form AY(t), where A is an
arbitrary random variable and Y(t) is a zero mean Gaussian process indepen-
dent of A.

Theorem 3 characterizes SIRP's as zero mean Gaussian processes with
random amplitudes. It is readily seen that a SIRP is Gaussian if and only if
F() is atomic with only one atom (i.e. A is a constant).

In the sequel we will exclude the identically zero process from consider-
ation. Consider the n-th order characteristic function associated with a
SIRP. It follows in a straightforward fashion that the non negative definite
matrix R in the quadratic form is the covariance matrix associated with the

n
underlying Gaussian random variables, given in Theorem 3. If this matrix
is positive definite, then it follows that the corresponding n Gaussian random
variables are nonsingular. From this it follows that the n random variables
from the SIRP are also nonsingular. In the case considered by Yao [31, n

!iwas positive definite for all n. Thus he considered nonsingular SIPs

Conversely, if n random variables from a SIRP are singular, then the corres- 4

ponding Gaussian random variables are singular, and thus the corresponding
covariance matrix is not positive definite.

It is well known [11 that if a SIRP is ergodic, then it is a Gaussian
process. Theorem 3 provides a simple illustration of this fact; that is, one

all, .



-5.

sample function will not yield any information concerning the statistics of the
random amplitude, and the amplitude is nonrandom if and only if the process
is Gaussian.

Theorem 3 also provides a simple illustration of the fact [1] that a
(deterministic) linear transformation of a SIRP results in a SIRP.

Theorem 3 furnishes a convenient method for studying the sample function
properties of SIRP's. Sample function properties of Gaussian processes have
been widely studied (see, for example, [5, Chapters 9-13)). We will con-
sider a few special cases of interest, and we will state the results in terms
of SIRP's. In the sequel, the zero mean SIRP X(t) will be assumed to be
separable, stationary, second order, and mean square continuous. Also,
we will assume that PfX(t) = 0) = 0. The next theorem follows from the work
of Dobrushin [6].

Theorem 4: Either

I. the sample functions of X(t) are continuous with probability one

or

2. with probability one, the sample functions of X(t) have discontinuities
of the second kind at every point.

The following corollary is a result of the further work of Belyaev [7].

Corollary 1: If the sample functions of X(t) are not almost surely cc, tinuous,
then they are almost surely unbounded in any interval.

The next theorem foliows from the work of Hunt [8].

Theorem 5: Let S(w) denote the spectral distribution function of X(t). If
Ia

C [log~l + w']ad,
. 0

for some a >1, then X(t) has continuous sample functions with probability
one. Also, if

CO

w~ rlog(l +w) ds Mw)"'
0

for some a >1, then X(t) has continuous sample function derivatives with
probability one.

,
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The expected rate of zero crossings of a Gaussian random process has
been studied by many investigators. The following theorem is based on the
work of Ylvisaker [9].
Theorem 6: Let R(T) denote the autocorrelation function of X(t). Thie expected

number of zero crossings of X(t) in an interval of length T is given by

:1/
, ,,L R (O ) j

if R(T) has a finite second derivative at the origin. If R(T) does not have a
finite second derivative at the origin, then the expected number of zero
crossings in any interval is infinite.

Now we will consider some common zero memory nonlinearities and we
will study their effects upon the second moment properties of X(t). Represent
X(t) as IA IY(t), where Y(t) is a Gaussian process independent of the random
variable A. Also, take Y(t) to have unit variance. Let R(r) denote the auto-
correlation function of X(t), and let p(T) denote the normalized autocorrelation
function,

P (T) R(Q)R(O)

Notice that p(r) is also the autocorrelation function of Y(t).

Let g, denote a hard Limiter; that is,

Jr tu..O

- if u<O

It is clear that

E(g1 (X(t +-)] g1 [X(t)]) = Efg1 [Y(t+-r)] gl[Y(t)]]

Then it follows from the well known result for Gaussian processes [10, pp. 280-
284] that

E(g1 [X(t+T)]gl[X(t)]) 2 arc sin P()

Let g2 denote a half wave linear rectifier; that is

F6
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u if u >0
g2 (u) = 0 if u< 0

Then we have

E[g2 [X(t +')] g 2 [X(t)A = EEg 2 [IAIY(t+)]g 2 [ IAIY(t)] I A]}

It follows from (10, pp.294-295] that

A2 A2

Etg2 [IAIY(t+ T)]g 2 [IAJY(t)] IA) -- p(T) +- [p() arc sin p(T)

+ (p(,)]
2

Therefore, we have that

r:(g[Xt+~l W 13 __) R(Q) (T) arc sin P(T) + lpwr) 2

Let g3 denote the square law device; that is,

2
g3 (u) = u

Assume that the fourth moment of X(t) exists. From the well known result
for Gaussian processes (10, p.264], we have

4 4 2
E(g 3 [[AIY(t+T)]g 3 [IAIY(t)] IA) = A + 2A [p(T)] .

Then it follows that

2 2Efg 3 [X(t+ T)] g3 [X(t)]] = [R(0)] + 2[R()]

Notice that for each of the above three zero memory nonlinearities, the
transformation upon the second moment properties is exactly the same as for
a Gaussian process. This result is not true in general. For example,
consider Baum's limiter

#.
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8u  2
9 g(u) + I ex, d

We have [10, pp. 2 9 8- 3 02]

Efg4[IAJY(t+T)]g 4 [JAJY(t)] A] = arc sin "

Thus

Efg 4 [IAY(t+ )]g 4 [Y(t)]) f a rc s n dF (v)4~~L 4Jv0I

if

Fv 0, v<a
F r(v) 1, v > Ca

then X(t) is a Gaussian process with autocorrelation a p(T), and the above
integral is equal to

A 
-" arc sin

217 5  La+1J

if

0, v < a/2

F(v) 0.8, a/2< v < 2a

, v >2a

2
then X(t) is a non-Gaassian SIRP with autocorrelation a p(r), and the above
integral is equal to

2arc sn J + -L arc sin [2 1

Thus the transformation upon the second moment properties induced by Baum's
limiter when the input is a SIRP is not necessarily the same as when the
input is a Gaussian process.

- - . .. .. ... ...... .. _
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CONCLUSION

In this paper we have established a useful representation for SIRP's,
which is given in Theorem 3. This theorem was then employed to establish
several properties of SIRP's.

Consider a random process of the form AY(t), where Y(t) is a zero mean
Gaussian process and A is an independent random variable. It is easy to
show that such a random process is spherically invariant. However, the
essential result of Theorem 3 is that any SIRP can always be represented by
an equivalent random process having this form. This result illustrates the
essential role played by Gaussian processes in the representation of SIRP's.
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